On A New Convergence Class in Sup-sober Spaces

نویسندگان

  • Hadrian Andradi
  • Weng Kin Ho
چکیده

Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of T0-spaces instead of restricting to posets. In this paper, we respond to this calling by proving a topological parallel of a 2005 result due to B. Zhao and D. Zhao, i.e., an order-theoretic characterisation of those posets for which the Scott-convergence is topological. We do this by adopting a recent approach due to D. Zhao andW. K. Ho by replacing directed subsets with irreducible sets. As a result, we formulate a new convergence class I in T0-spaces called Irr-convergence and establish that a sup-sober spaceX is SI-continuous if and only if it satisfies ∗-property and the convergence class I in it is topological.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a new convergence class in k-bounded sober spaces

Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of T0 spaces instead of restricting to posets. In this paper, we respond to this calling by proving a topological parallel of a 2005 result due to B. Zhao and D. Zhao, i.e., an order-theoretic characterisation of those posets for which the lim-inf con...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

ON Q-BITOPOLOGICAL SPACES

We study here $T_{0}$-$Q$-bitopological spaces and sober $Q$-bitopological spaces and their relationship with two particular Sierpinski objects in the category of $Q$-bitopological spaces. The epireflective hulls of both these Sierpinski objects in the category of $Q$-bitopological spaces turn out to be the category of $T_0$-$Q$-bitopological spaces. We show that only one of these Sierpinski ob...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.03269  شماره 

صفحات  -

تاریخ انتشار 2017